JOURNAL OF SOLID STATE CHEMISTRY 114, 459-468 {1995)

Electronic Lone Pair Localization and Electrostatic Energy
Calculations: Application to «-PbO, SnO, Pb,_,(TiO), O, Pb;0,,
Pb,(V,P),0;, and a BiSrCaCuO-Type Superconductor

D. Le Bellac,* J. M. Kiat,* 1 and P. Garniert

*Laboratoire Léon Britlouin (CEA—CNRS), Centre d’ Etudes Nucleaire de Saclay, 91191 Gif-sur-Yvette Cedex, France; and tLaboratoire de
chimie physique du solide (URA 453 au CNRS), Ecole Centrale des Arts et Manufactures, 92295 Chétenay-Malabry Cedex, France

Received February 8, 1994; accepted May 9, 1994

A method of calculation has been developed for localizing elec-
tronic lone pairs in crystalline structures including incommensu-
rate modulated structtres or structures containing impurities. The
cohesion energy of the resulting structure (jons and lone pairs)
may also be calculated. The calculation is based on the method of
A. Verbaere, R. Marchand, and M. Tournoux {(J. Solid State
Chem. 23, 383, 1978), which assumes knowledge of the electronic
polarizability coefficient of the ions possessing a lone pair, relative
to the local electric field in the crystalline structure, These calcula-
tions have been made for some compounds and related to experi-
mental studies. The influence of the lone pairs on the structural
incommensurate transition of «-PbO is studied and compared
with their influence on the structural evolution of SnQ and
Pb,_,(Ti0),0. Using the same method, the role of the lone pairs
in Pb;04, Pby(V,P);03, and a BiSrCaCuO-type incommensurate
superconductor is discussed. © 1995 Academic Press, Inc.

INTRODUCTION -

During the past two decades, some experimental and
theoretical works have been undertaken in order to under-
stand the influence of lone pairs on the stability of some
crystalline structures and on structural phase transitions.
The steric effect of electronic lone pairs has been evi-
denced in many compounds (1-8). A lone pair refers to
an electronic orbital occupied by two electrons; this or-
bital can be localized far from the nucleus of its ion of
origin. In addition, some of the lone pairs’ properties are
comparable to those of an ns’-type orbital of spherical
symmetry .That is why Galy et al. (2) define the lone pair
as an intermediate state between an inert spherical ns’-
type orbital which is centered on the nucleus,and a non-
bonded hybridized-orbital lobe which is not spherical but
localized far from the atomic nucleus. This orbital of two
electrons is encountered in compounds containing ions
with an appropriate valence such as Ph(Il}, Sn(11), Bi(I1l},

! To whom correspondence should be addressed.

and TI(]). In those cases, because of the electronic con-
figuration of the atoms, two electrons of the ion are not
involved in any bonds. According to whether or not the
local symmetry of the ion permits displacement along
one direction, the two electrons occupy a shifted orbital
relative to the ion position.

Many compounds possess such lone pairs in their struc-
ture. Some authors have shown that the steric occupation
of the lone pairs is comparable to the steric occupation
of 072 or F~ ions (2-4). In the transformation of PbO,
into PbO, for instance, it was shown that lone pairs take
up positions on some O~ % ions’ sites. More recently, some
works have been completed which point out the influence
of the lone pairs in structural phase transitions in lead-
and bismuth-containing compounds such as Pb;0O,, lead
orthophosphovanadates, and bismuth superconductors
(5-7).

All those works were based on the stereochemical prop-
erties of the lone pairs. In parallel, Verbaere et al. (1)
proposed a description of the influence of lone pairs taking
into account their electrostatic contribution. They were
able to determine the position of the lone pairs in the
structures of different crystals that can tolerate an ionic
crystal approximation. They calculated those positions in
thaliium(I) oxygenated compounds and both structures of
lead monoxide. Their results confirm some conclusions
made from stereochemical considerations but contradict
others such as the determination of the lone pairs’ position
in 8-PbO. Thus, this method yields new quantitative infor-
mation about the positions of lone pairs in different struc-
tures.

We propose in this work to use this method to analyze
the electrostatic influence of lone pairs in different struc-
tures with increasing complexity. We have developed the
method to be applicable to complex structures such as
incommensurate structures or impurity-containing struc-
tures. We have also developed a method of calculating
the electrostatic energies of the resulting structures taking
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into account the calculated positions of the lone pairs,
We have applied these calculations to «-PbO in order to
analyze the incommensurate phase transition that occurs
at 227 K. We have made some comparisons with the
isostructural tin oxide SnO and the selid solution Pb,_,
(Ti0},0, for which no phase transition occurs. Finally,
we present calculations for other compounds containing
lone pairs and the analyses and conclusions we can deduce
from these calculations.

THEORY OF THE LOCALIZATION OF LONE PAIRS AND
OF THE DETERMINATION OF THE ELECTROSTATIC
ENERGY OF THE STRUCTURE OF 1I0NIC
CRYSTALLINE COMPOUNDS

We consider an infinite ioni¢ crystal with spherical non-
recovering charge distribution. The crystal is then equiva-
lent to a punctual charge distribution (Gauss’ theorem)
centered on the atomic positions. In addition, we assume
that each lone pair is spherical and very separate from
its ion of origin. Thus, each lone pair is also equivalent
to a punctual charge such as a common ion (Fig. 1a).

Lone pair localization in a crystalline structure is based
on the knowledge of the electronic polarizability of its ion
of origin. Indeed, under the influence of the local electric
field in the crystal, ions are polarized. The delocalization
of the lone pair is assumed to be due to the deformation of
the electronic cloud of the ion because of that polarization.
Thus, the knowledge of the coefficient of polarizability
of an ion allows one to determine the position of a lone
pair by finding the equilibrium state between the local
electric field and the electronic polarization of an ion, i.e.,
the electric dipolar momentum of the distorted cloud. In
an ionic crystal approximation with lone pairs equivalent
to punctual charges, the electric dipolar momentum of an
ion possessing a lone pair is equal to g8, g being the
electric charge of a lone pair, i.e., —2|e|, and 8 being the
vector that links the nucleus of the ion to the center of
its associated lone pair. The ion possessing a lone pair is
then formed of a relative charge ¢ + 2 located at the
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atomic position, g being the charge of the ion, and a
relative charge of —2 at the position of the lone pair (Fig,
1a). The relation between the 8 vector and the local elec-
tric field E 1s then

qé =

«E, L1}

where o is the electronic polarizability of the ion. The
electric field is assumed to be constant between the nu-
cleus and the lone pair so that it can be taken on the
position of the nucleus, The electronic polarizability coef-
ficient, «, is nearly constant for a given ion whatever
the ionic compound containing it (8). Thus, it can be
determined by the Clausius—Masotti formula and from
refraction index measurements of materials containing
those ions.

The determination of the equilibrium is made by an
iteration process that converges toward the equilibrium.
An iteration is made up of the calculations of the local
electric field for the different ions of the unit cell that
possess lone pairs. Then the position of each lone pair is
modified according to Eq. [!]. But as that modification of
position implies modification of the local electric fields,
the calculation is repeated until equilibrium is achieved
between electric dipoles and local electric fields. We
notice that, in the calculation of the local electric field
at an ion position, the contribution of its associated
lone pair must be removed because that lone pair does
not contribute to the polarization of the ion. The first
calculation 1s made using arbitrary positions of the
lone pairs &"; for instance, centered on the nucleus,
where " = 0. This method takes into account not
only the ions of the structure, but also the electro-
static influence of the lone pairs that are considered as
common ions during the calculation of a local electric
field,

The calculation of the local electric field is performed
using Ewald’s method (9), which enhances the conver-
gence speed of the summation of the electrostatic contri-
butions of all the ions in the crystal. This method was
developed for the calculation of the electrostatic energy
of an infinite ionic crystalline structure. Verbaere et al.
(1) derived this method to calculate the local electric field
at the position of an ion. The complete expression of the
jth (j = 1, 2, 3) covariant coordinate of the local electric
field at an ion p’ is

E(p") = —(ela;) 2 Eh’ {[z,/(mAky )]
[exp(— 02 [k, D127k, sinQarky(r, — r,))
+(z,/?) - G;(p)[1 — F(t/n)
+ (2t exp — (I (V)

(21
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where t = |r, — r, —1,| and
3 N .
Gy(p) = 2 lx'(p) + by = x'(p)] - a; - aft},

where a; is the unit cell vector, r, is the position of the p
ion, and x'( p)|a] is the jth contravariant component of r,,
where p is the index of the ions of the unit cell, including
lone pairs, and h is the index of the ceils and corresponds
in fact to the three indexes hy, hy, and h;, z, is thegv ion
relative charge, A is the unit cell volume, k, = Z._, &;
af and F is the error function:

F(x) = (2/V7) j " exp(—1) dt.
0

The prime on the second summation means that h # 0 if
p = p'. Finally, % is the parameter of Ewald’s method,
homogeneous to a length on the order of the inter-
atomic distances.

The summation convergence speed of Eq. [2] depends
on the value of ». Usual values are either half the length
of the shorter interatomic distance, or the cubic root of
the unit cell volume.

Thus, having calculated the local electric field E;{(p'),
we obtain the position of the lone pair, defined by the &
vector, by the relation

8; = (adzle(E;(p") + zle| - 518", (3]

where 8; is the jth covariant coordinate of the & vector,
o is the electronic polarization coefficient of the ion with
the lone pair, z is the relative charge of the lone pair, i.e.,
—2, and 8i" is the arbitrary initial value for §,. The second
term is introduced here to subtract the contribution of the
lone pair associated with the p’ ion in the local electric
field.

After the calculation of the positions of the lone pairs,
we pursued the calculation of the energy of the resulting
structure, The total energy is also called the cohesion en-
ergy, corresponding to the opposite of the sublimation
energy. This energy contains the electrostatic energy of
the jonic structure, which can be written as

1 f
W =3 22, 2,2, lelMt, (4]
2P-P’ h

where p and p’ are the indexes of the unit cell ions, h is
the index of the crystal cells, and z,le} and z,le| are the
charges of the p and p’ ions. The prime on the second
summation means that the case ; = h, = h; = 01is ex-
cluded when p = p'. Using Ewald’s method to calculate
this energy, we express W, in electron volts as

461

W, = lel/(8meg) 2, 7,P(r, ), [5]
2

where 1/(8me,) = 4.5 x 10° (USD), and |e| = 1.602 1077
C, p' is the index of the ions, including lone pairs, z,, is
the p' ion relative charge, and

o, = > 2}; {{z,/ (Al Nlexp(— 7 ky[D]cosm ky,
Pl

(= 1))+ (/0 - [1 = Fleim} (6]
— Qe WV -,

with the same notation as in Eq. [2].

The lone pairs are considered common ions of charge
—2|e|. However, the interaction between each lone pair
and its ion of origin is excluded from the summation be-
cause both entities form only one ion.

Furthermore, another part of the cohesion energy is
the energy of creation of the lone pairs. It corresponds
to the energy needed to divide the ion into two charges,
the nucleus-centered charge and the lone pair, i.e., the
energy needed for the polarization of the ion. That is why
this energy can be approximated by the creation energy
of the dipole corresponding to the two charges, i.e.,

1
Wcre = EEMP ' E:,UC, [7]

where p is the index of the lone pairs, p, = 2,8,. This is
an approximation as the distance |8, between the nucleus
and its lone pair is not negligible.

To those Coulomb-type energics is added a repulsive
Pauli-type energy W,,. A usual form of this energy for
two jons i and j that are separated by the distance |r| is
Ay - exp(—By - |r;|), where the empirical constants A; and
B; depend on the pair of ions (10). Because of its abrupt
shape, this repulsive energy at equilibrium, is very small
in comparison to the attractive electrostatic energy which
then is the main component of the energy of cohesion. In
our work, we have calculated the Coulomb-type energy
that can be determined exactly but we have determined
the repulsive energy only in a purely qualitative way using
the approximation

1 ' "
Wrep = EPZPEh K/t »

with a value of # between 9 and 12.
Finally, we neglect the ionization energies appearing
in the transformation of the neutral atoms to ions.
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COMPUTERIZATION OF THE LONE PAIRS
LOCALIZATION METHOD AND OF THE
COHESION ENERGY CALCULATION

We have computerized those calculations of the local
electric field and energy on Sun 4-UNIX and PC systems
in the standard Pascal language (11}. The lattice parame-
ters a, b, ¢, a, B8, v, the number of atoms in the cell, the
relative atomic coordinates, and the charges of the ions
are introduced in an input file. The parameters needed
for the calculations are also introduced at the same time:
the Ewald parameter » (in A), and the accuracy sought
on the position and on the energies. The summations for
the calculation of a position or an energy are expanded
until the last calculated term is smaller than those preci-
sion parameters. Finally, the introduction of the lone pairs
is made by defining for each ion possessing a lone pair the
electronic polarizability coefficient, the refative charge of
the lone pair, which should be —2 but which may be
changed if necessary, and the initial position of the lone
pair. Let us note here that we introduced the possibility
of associating more than one lone pair with an ion, with
different charges and a different polarizability coefficient
for each lone pair. These charges are named movable
charges here, as opposed to the fixed charge on the atomic
position. This generalization yields minor modifications
in the calculations and may be useful in modeling, for
example, multipoles or molecular groups.

All the atoms of a unit cell have to be defined one by
one even if they are symmetrically equivalent. Similarly,
the calculation of the positions of the lone pairs or of the
energetic contributions of the ions are normally made ion
by ion even if they possess symmetry relations. So, to
reduce the time of calculation, we introduced the possibil-
ity of linking charges (lone pairs and ions) that have the
same particular Wyckoff’s position (and thus the same
energetic contribution), so that the calculation of a posi-
tion or of an energetic contribution need be made only
once. We also introduced the possibility of calculating
interatomic distances between the ions, including lone
pairs.

Ewald’s method offers the possibility of easily introduc-
ing a Gaussian charge distribution on each ion instead of
a punctual charge. Equations [3] and [5] are only slightly
modified. It was shown that such distributions have a
relevant influence on the electrostatic energy (12). So, we
introduced the possibility of associating to each ion a
Gaussian charge distribution with a certain full-width half-
maximum parameter. This possibility is interesting as it
permits the decomposition of ions in a punctual charge
composed by the nucleus and the deep electronic layers
and a Gaussian charge distribution composed by the exter-
nal electronic layers, so that the model can better approxi-
mate reality.
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In addition, in order to study complex structures, we
introduced the possibility of defining incommensurate
modulations and impurities. A modulation on the atomic
positions is introduced by a deviation from the average
position of the form

u; = A;cos2mq; - 1 + o], (8]

withi{ =1, 2, 3, q; being the incommensurate wave vector
and r determines the average atomic position. But, as
Ewald’s method is only applicable to crystalline struc-
tures, we made it possible to define multiple cells easily
from the definition of one cell. Thus, a modulated struc-
ture can be approximated by a commensurate structure
with a supercell composed of several adjacent unit cells
along the modulation direction, while the modulated dis-
placements are applied to the atoms of the supercell (see
the application on a-PbO below). In addition, the intro-
duction of impurities can be analyzed by creating a su-
percell composed of one unit cell containing the impurity
and other cells being normal. As the program can support
2000 atoms per unit cell, a sufficiently large supercell can
be defined to evaluate the influence of an isolated impurity
on its neighborhood.

The program can be applied to other types of structures
than those containing lone pairs. A charge distribution
containing pure dipoles, for instance, can be processed
by this program. The only difference between lone pairs
and dipoles is that the latter are composed of two infinitely
close charges instead of two charges separated by nonneg-
ligible distances. Thus, the modeling of a dipole intro-
duces two important charges {(more than 10/e|) separated
by a very short distance in comparison to other distances
of the structure (less than 0.1 A for instance), so that the
total electric dipole moment equal to zle|d gives the de-
sired value. One can either impose fixed values (orienta-
tion and intensity) on the electric dipoles, or let them
vary according to their electrostatic environments and
polarizability coefficients. Regarding the electrostatic en-
ergy, the interaction between the two close charges is not
taken into account but its dipolar influence is present. As
the program permits more than two charges to compose
one jon, multipoles can be modeled too. In some complex
structures, it may be important to introduce certain delo-
calized electronic distributions to model the structure
(Fig. 1b). With this aim, the program gives the possibility
of introducing ions composed of several punctual charges
(molecular groups). Interactions between those charges
are not taken into account but the e¢lectric interactions
between all those groups can be estimated. In the same
manner iono-covalent bonding can be introduced
{Fig. 1c).

The calculation of the electrostatic energy of the charge
distribution has been verified for well known values of
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FIG. 2. Room-temperature a-PbQO structure. The lone pairs of the
Pb** ions are schematically represented by dashed lobes,

NaCl and CsCl structures. The energies are obtained in
a few seconds with a precision of 1073 eV. Other verifica-
tions of the energetic calculations have been made with
the work of Bertaut (13) on the structure of RbAIF, in
the presence of electric dipoles. We could calculate in a
few seconds the different energies in agreement with his
results. Regarding the local electric field, we referred to
Verbaere et al. (1) with calculations on thallium{I) oxygen-
ated compounds and the room temperature structures of
a-PbO and 8-PbO. Some improvements may be made in
the computerization, such as the introduction of polariz-
ability tensors for the polarizable ions. Such improve-
ments should make it possible to investigate more com-
plex structures.

APPLICATION TO THE STUDY OF THE
INCOMMENSURATE STRUCTURAL
TRANSITION OF a-PbO

We present an application of these calculations in the
framework of the study of a structural incommensurate
transition that occurs in the tetragonal phase of lead mon-
oxide o-PbO (14-16). Figure 2 shows the very simple
layered structure of «-Pb( at room temperature. In paral-
lel, we studied the two isostructural compounds, tin mon-
oxide SnQ and the solid solution Pb,__(Ti0), O with x =
0.06, where some Pb atoms are substituted by a TiO
group. It was shown that a-PbO presents a structural
phase transition at 224 K. This transition is characterized
by two phenomena: a mono-incommensurate modulation
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appears along the [110]*- or (1 T0]*-axis, and a weak ferro-
elastic distortion distinguishes the directions a, = a, + b,
and by = a, — b,. This is a displacive-type transition and
the low-temperature modulated phase should result from
the condensation of a phonon soft mode (16}. The modu-
lated structure has been determined from X-ray and neu-
tront powder diffraction results (15, 16). In contrast, Sn0O
and Pb,_ (Ti0},0 do not present any transition and con-
serve the tetragonal structure until at least 1.5 K. It was
shown that lone pairs’ interactions are likely to be respon-
sible for the transition in o-PbO. We propose a model
showing that the phonon soft-mode condensation in a-
PbO can originate from electrostatic interactions between
polarized Pb?* ions, leading to structural instability. We
show, in agreement with the experimental results, that
such interactions are either too weak to induce the transi-
tion in SnO or strongly disturbed by the TiO groups in
Pb,_.(Ti0),0.

The calculations of the positions of the lone . pairs in
room- and low-temperature o-PbO structures use struc-
tural data obtained by X-ray and neutron powder diffrac-
tion (15): that is, the three lattice parameters and the z
position of the lead atom in the tetragonal phase. Calcula-
tions for the low temperature incommensurate phase re-
quire the same parameters in addition to six amplitude and
phase modulation coefficients for each two independent
atoms, i.e., one lead and one oxygen atom. We introduced
the electronic polarizability coefficient for the Pb’* ions:
a = 4.9 A®(8).

In the tetragonal room-temperature structure, the &
vectors, defining the positions of the lone pairs in relation
to the Pb?* ions site symmetry, are parallel (o ¢,. The
calculation confirms that lone pairs are, in the interlayers,
parallel to the c-axis with distance (6] = 0.995 A (Table
1}. Moreover, a decrease of the a-parameter, the c,-
parameter, or the z-parameter induces in the calculation
respectively an increase, no variation, or a decrease of
|8|. Experimentally, a decrease of the a,- and ¢,-parame-
ters and an increase of the z-parameter are observed in

TABLE 1
Pb" Lone Pair Localization Calculation Results in the
Tetragonal and Incommensurate Phases of a-PbO
(Distances in A)

Normal Incommensurase phase (5 K)

phase Average

(300 K) Minimum Maximum Average structure
|8 = Pb-E 0.995 0.952 1.097 1.024 1.008
0-0 (along ay) 1810 2,803 2.803 2.803 2.803
0-0 {along by} 2.810 2,728 287 2.803 2,803
E-E (along ag) 2.390 2.815 2.955 2875 287
E-E {along by) 2.89%0 2.7182 2977 2872 2.870
0-E 2.944 2.873 3.074 2.967 2951

Note, E represents the lone pair (see also Fig. 2).
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FIG. 3. Schema of the lone pairs’ positions in the modulated strue-
ture of a-PbO at 5 K. The atomic and lone pair displacement amplitudes
are multiplied by a factor of 5.

cooling from room temperature; so the distance |8 in-
creases when the temperature decreases. This, in addition
to the contraction of the lead-lead distance, induces a
diminution of the lone pair-lene pair distance (Table 1).
Thus, the electrostatic interactions between lone pairs
increase as the temperature decreases.

At lower temperatures, we approximated the incom-
mensurate low-temperature phase by a commensuraie
structure with modulation parameter g, = § = 0.375 in-
stead of the experimental value q; = 0.371)(a} + bF)/2,
using a supercell formed by eight adjacent unit cells (de-
fined by the vectors ay, by, and ¢, = ¢,) along the direction
of the modulation. The resulting positions of the lone pairs
are presented in Fig. 3. The main result is that the lone
pairs are tilted from the c-axis and possess a sort of move-
ment of precession around this axis. In addition, calcula-
tions made with the lattice parameters of the incommensu-
rate phase but with no modulation (i.e., the average
orthorhombic structure), show that the lone pair-lone
pair distances of this structure are practically equal to the
average value of that of the incommensurate structure
(2.870 A instead of 2.875 and 2.872 A, Table 1). But the
average distance || is greater in the modulated structure
than in the nonmodulated structure (1.024 instead of 1.008
_A). This shows that the modulation is favorable to the
extension of the lone pairs while the lone pair—lone pair

LE BELLAC, KIAT, AND GARNIER

distance is kept unchanged, which means that the lone
pairs preserve their steric occupation.

We have calculated the energy of the modulated siruc-
ture taking into account the calculated positions of the
lone pairs; a detailed report will be published elsewhere
(16). The main result was obtained by varying the modula-
tion parameter g in the electrostatic energy calculation
while keeping constant the values for the modulation am-
plitudes: in that case the energy of the modulated structure
is minimized for a value of q; = 0.31 (Fig. 4), which
approximately corresponds to the experimental value
g; = .370(1). This minimum was observed to disappear
when the polarizability coefficient « of Pb** ions dimin-
ishes. As the extension of the long pairs is directly con-
nected to this coefficient, this shows that the instability
1s created by the presence of the lone pairs in the structure,

Moreover, the decomposition of the electrostatic energy

into three terms relative to the different interactions, Cou-
lomb-type interactions between punctual charges, inter-
actions between dipoles only, and interactions between
punctual charges and dipoles, reveals that it is the interac-
tions between dipoles (i.e., ion-lone pair—ion—-lone pair)
which are responsible for the minimum in the total curve,
and thus for the instability of the structure,

Finally, using our program, we have calculated the elec-
tric fields produced by the modulation displacement of a
Pb%* jon on its first and second nearest neighbors and
show the existence of a frustration which could explain,
through the application of an Axial Next Nearest
Neighbour Ising model (ANNNI model), the stabilization
of the incommensurate phase at temperatures down to
0K (17).

0.010
O PbO-«
0.00% o snQ -
]
—. 0000
C
w
< -0.005# .
)
-0.010 -
-0.015
0 0.1 0.2 0.3 0.4 0.5
Modulation parameter q,
FIG. 4. Electrostatic energy difference per chemical formula be-

tween the nonmodulated structure and the moduiated structure of a-
PbO at low temperatures with a varying modulation parameter q;. The
same curve in the hypothesis of a modulation in SnO.
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FIG.5. Schema of the lone pairs’ positions perturbed by a TiO group
in the structure of o-PbO. The variations of the vectors |8] from the
average value are multiplied by a factor of 5.

The same calculations have been applied to the $nO and
Pb,_ (TiO}, O structures. In Sn0, the lattice and position
parameters and the polarizability coefficient of Sn** ions
{a = 4.0 A% are different from those of a-PbQ. We find
a smaller extension in SnO than in «-Pb0O, \5| =0.903 A
at room temperature. Moreover, assuming the same type
of modulation as in a-PbO, no minimum in the curve of
electrostatic energy versus ¢; was evidenced contrarily
to lead oxide. Figure 5 presents the result of lone pair
localization in Pb,_ (Ti0),0 using a supercell of PbO with
a substitution of a lead atom with its lone pair by a TiO
group. The lone pairs of the lead atoms in the vicinity of
the TiO group appear to be greatly displaced: indeed, a
tilting of the lone pairs in relation to the c-axis with a
maximum amplitude of 13° is observed. These tilts allow
a decrease of the interlayer distance as experimentally
observed. This local perturbation has as a consequence
the diminishing of the interaction which is responsible for
the transition in lead oxide, as experimentally shawn by
the stability of the tetragonal phase down to low tempera-
tures.

APPLICATIONS TO SOME DIFFERENT
COMPLEX STRUCTURES

We briefly present three other examples of application
of lone pair localization to some compounds its role in
whose structural evolutions is qualitatively pointed out.
Our results show the applicability of this method to differ-
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ent structures as well as complex structures such as a
BiSrCaCuQ-type superconductor.

Lead Orthophosphovanadates

The lead orthophosphate Pb,P,0; and the lead ortho-
vanadate Pb;V,0, possess phase transitions from a rhom-
bohedral y phase at high temperatures to difterent mono-
clinic @ and 8 phases (6, 18, 19). The structure of the
rhombohedral y phase is a stacking of PO, (or VO,) tetra-
hedra layers, orthogonal to the threefold axis (Fig. 6). In
a layer, chains of tetrahedra are connected by lead atoms
of two types: Pb, inside the layers and Pb, at the surfaces
of the layers. It was shown that the main displacements
observed in the phase transitions are movements of lead
atoms parallel to the layers of the structure. Those lead
atoms possess a lone pair in the interlayer space.

We present a quantitative approach of the determina-
tion of the lone pairs’ position in the different structures
of those compounds. Table 2 shows the different exten-
sions and tilts 8, defined by the angle between the 8 vector
and the direction of the a* direction (threefold-axis in the
v phase) perpendicular to the layers. We introduced the
ions Pb**, P°* or V¥, and O72, Tt is observed that the

FIG. 6. Projection of the structure of the y phase of Pb; V.0, in the
a, ¢ plane of the monoclinic common cell which can be ysed to describe
the rhombohedral and the low temperature monoclinic phases (the three-
fold axis is along a*). The small. medium, and large circles represent
respectively the vanadium, lead, and oxygen atoms, and the lobes repre-
sent the electron lone pairs. Open circles are located at y = &, closed
circles at y = 1, and hachured circles aty = 0 and =~ 1. The VO, tetrahedra
are represented by dashed lines; d; and d, are the layer thickness and
interlayer distances, respectively {(6).
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TABLE 2
Pb" Lone Pair Localization Calculation Results in Pb;V,0, and
Pb,P,0; Structures (Distances in A)

Pb;V,04 Pb,P,0
y-phase  B-phase  a-phase y-phase  B'-phase
(573K) (MK (8K (473 K) (300 K)
Component of &
along a* (&) 0.086 0.049  -0.103 -0.101  —0.065
Compenent of &
along b* (A} 0 -0.38  —0.248 0 -0.321
Cemponent of &
along ¢* (A) 0 0.215 0.266 Q 0.08]
(& (A3 0.086 0.443 0.378 0.104 .337
Angle ¢ (a*, 8) 0 34 106° 180° 101°

Nore, The angle @ is between the a* vector orthogonal to the layer
(paralle! to the threefold-axis in the v phase) and 8.

lone pairs occur perpendicular to the layers in the y phases
of both compounds, due to the symmetry of the Pb?*
ions’ positions. A surprising feature is that the calcujated
positions of the lone pairs in the vy phase of Pb,V,04
are localized inside the layers instead of occupying the
interlayers (tilt # = (°); in contrast, the lone pairs occupy
the interlayer in Pb;P,04. In the monoclinic phases, the
lone pairs are tilted and are nearly parallel to the layers;
in the «a phase of Pb;V,0; the lone pairs return inside the
interlayer. This configuration of strong tilts is obviously
favorable to the large shears observed experimentally.
Moreover, the different monoclinic phase transitions and
the associated shears allows the extension of the lone
pairs: 8] = 0.445,0.378,0.337 A in the 8, &, 8', monoclinic
phases, insgead of 0.086 A in the v phase of lead vanadate
and 0,101 A in the v phase of lead phosphate (Table 2).
This shows that the different monoclinic phases that result
from the transformation of the common rhombohedral
phase differ in the different steric occupation of the lone
pairs inside the interlayer.

Minium Pb,Q,, Comparison with SnPb,0,

The room temperature structure of the minium Pb;0,
is shown in Fig. 7. Two types of polyhedra are present:
PbO; octahedra (where the lead atoms have a IV valence,
thus with no lone pair} and irregular pyramids with a Pb!
lead atom at the vertex. In contrast to the other structures
described above, the associated lone pairs of the Pb!
atoms are expected in this case to occupy the large canal
of this structure formed by the Pb! lead ions. At low
temperatures Pb,0, presents a sequence of three ferro-
elastic and ferroelectric transitions from a teiragonal
phase at room temperature 10 orthorhombic phases stable
at temperatures below 170 K (20). The structural origin
of those transitions was attributed to the steric occupation
of the lone pairs of the Pb! ions in the structure. It is
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FIG.7. Projection perpendicular to the ¢ tetragonal axis of the Pb;0,
struciure at room {emperature.

interesting to make an analysis of the lone pairs’ positions
in the different structures using the data from (5). We also
determined the lone pairs’ positions in the room temp-
erature isostructural SnPb,0, compound where no struc-
tural transition occurs. The calculations were made with
the polarizability coefficients o(Pb™*) = 4.9 A% and
a(Sn’*) = 4.0 A*,

The results are presented in Table 3. The lone pairs
occupy the canals as expected (Fig. 7). The transition from
the room-temperature to the low-temperature structure is
characterized by a slight rotation of the lone pairs that
reconfigures the occupancy of the canals. In SnPh,0, at
room temperature and at 5 K, the results show that the
lone pairs have an equivalent ¢xtension to that in Pb;Oy
which contradicts the interpretation proposed in (21), that
is, a “‘pumping’’ process of the lone pairs in those struc-

TABLE 3
PbY Lone Pair Localization Calculation Results in PbyO, and
SnPb,0, (Distances in A)

Pb,0, SnPb,0,
0K 8K WK 8K
Pb(1) |8 (A) 084 (.87 0.91 0.88
Angle 6 (a, 8) 28° 25° 21° 24°
Ph(2) |8 (A) 084  0.83 082 085
Angle @ (a, 8) 28° 34° 35° 33°

Note. The angle 0 is between the tetragonal a vector (see also Fig.
6) and 3.
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FIG. 8. Structure of the superconductor Bi,SryCaCu,Oq; P is the
perovskite block, connected to the adjacent one by the Bi-0 layers.

tures. Nevertheless, one observes that, due to a slight
orthorhombic distortion in SuPb;0,, the lone pairs have
the same type of configuration as in Pb,0, at 5 K (compare
Pb,0, at 5 K and SnPb,0, at 5 K). This seems to show that
in SnPb,0,, with only a slight orthorhombic distortion at
room temperature, a stable occupation of the canals by
the lone pairs occurs whatever the temperature is (this is
due to lower interatomic distances), in contrast to Pb;0O,,
which needs a more significant structural transition to
acquire its low temperature stable state.

A BiSrCaCuQ-Type Superconductor

The fast example we present is the case of a high-
critical-temperature superconductor: Bi,Sr,CaCu,0;.
Figure 8 shows the well-known structure with the perov-
skite blocks and the two Bi-O connecting layers. This
compound presents an incommensurate modulation with
some modulation amplitudes as large as 0.5A, and there
are 60 atoms in the unit cell. Its structure has been deter-
mined by several authors. To our knowledge the most
complete data are at present those of Kan and Moss (22).
The Bi** ions have electronic lone pairs which should
occupy the interlayers between adjacent Bi—O layers; the
role of the lone pairs in incommensurate modulation has
often been pointed out (7). We have performed the local-
ization of these lone pairs, using the polarizability coeffi-

467

cient a(Bi*") =3.0 A? obtained from the Clausius—Masotti
formula and refraction indexes of several Bi#* jon-con-
taining compounds. In order to introduce the modulation
with q; = 0.212 we used a 14th-multiple cell with three
periods of modulation, i.e., q; = 3/14 = 0.214.

The result of the calculation is presented in Fig. 9.
The main result is that the lone pairs’ positions change
drastically along the modulation direction, in contrast to
the case of the incommensurate phase of lead oxide.
Indeed, the distances |8 between Bi** ions and their
lone pairs change from 0.21 to 1.92 A. Moreover some
lone pairs acquire so strong a tilt that they become parallel
to the layers. It is interesting to relate this result to
some hypotheses made by Tolédano et al. (7) regarding
lead-substituted (Bi,Pb)SrCaCuO-type compounds. In
those compounds, the modulation could be due to the
Pb2* lone pairs being paraliel to the layers. This shows
that this configuration of the lone pairs also exists in non-
lead-substituted compounds, perhaps giving some clue to
the origin of the incommensurate modulation in this
system.

Finally, comparison with the structure of lead oxide
and that of the compound Pb, ,(Ti0Q),( suggests the ex-
amination of the incommensurate and structural charac-
teristics of Bi,Sr,CaCu,0y compounds doped with tita-
nium: indeed, a recent study (23) has shown that no
variation in the superconductor critical temperature is
observed when titanium js substituted for bismuth {even
for high concentrations up to 50%5). The advantage of such
a substitution could be that large single crystals could be

04

T o

4

o 0
e Bi
H E

FIG. 9. Lone pair localization in Bi,SryCaCu,;04. Dashed lines show
the BiO planes.
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more easily grown, as observed for Pb,_ (Ti0),0 com-
pared with a-PbQ), because in these structures a TiO group
replaces a lead (bismuth) atom with its lone pair, which
results in an increased coherence between layers.

CONCLUSION

Using a very simple model of punctual charge distribu-
tion we have performed lone pair localization and electro-
static energy calculation in various structures. In the case
of a-PbO this method allowed the explanation of the origin
and stability of the incommensurate phase at low tempera-
ture, which is due to dipolar interactions between lead
atoms, and the understanding of the absence of transitions
in isotypic compounds SnCG and Pb,_ (Ti0),0. This
method has been applied to some other lead oxides, in
particular to minium, Pb,0,, for which the lone pairs have
been shown to occupy. the large canals of the structure.
The method has also been shown to be applicable to com-
plex structures such as BiSrCaCuO-type superconductors
with 60 atoms per unit cell and elevated amplitude incom-
mensurate modulations.

A general result is that electrostatic interactions be-
tween lone pairs have great importance for the occurrence
or absence of phase transformation in these types of com-
pounds. In the case of lead oxide and isotypic compounds
it is interesting to observe that using a crude ionic model,
predictions for the presence or absence of phase transfor-
mation in these very simple structures are achieved; there-
fore we suggest that more sophisticated methods such as
ab initio and first principle calculations could easily be
applied with profit to such compounds.
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